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Abstract. The validityof semiclassical transport theoryfor two-dimensional Fermi and Bose 
conducton is analysed. It is pointed out that if the high-Tc materials are Bose conducton, 
this theory breaks down. It is also argued that the regime of ‘resistivity saturation’ in this 
case occurs at low temperatures with a resistivity chat increases linearly with temperature. 

One of the characteristic features of the new Cu oxide superconductors is the unusual 
temperature dependence of the normal-state resistivity p.  Measurements show that p 
parallel to the ab-plane is nearly linear in Tfor T > T, [l-51. 

Several theoretical explanations have been offered for this behaviour [6-111. 
Common to all these proposals is the use of semiclassical transport theory which leads, 
essentially, to the Drude formula for p [ 121: 

p = m/ne2r (1) 
where n is the carrier density, m its mass and r the collision time, If one uses (1) to 
estimate 5,  taking p = (YT, with (Y = 1 &? cm K-’ [l], m = (1-5)m. (me = electron 
mess end :: = 3 x $’ cii-’1 ~ i i e  Ends ;‘/z > z7. Mcde!s !h:! give fib a rTare:  two- 
dimensional Fermi conductors, in which case the linear T-dependence comes from 
electron-phonon scattering [6-9] and from UmkJapp electron-electron scattering 
[7,10], and two-dimensional Bose conductors in which the charge-carrying quasi- 
particles are bosons. In this case fi /r  = KTcomes from boson-phonon scattering [ll]. 

The conclusion that h/r  3 KTsuggests that in these systems the quasiparticles are 
not well defined excitations, in the sense that the linewidth r - fi /r  is greater than the 
excitation energy -KT.  One of the possible consequences of r 3 KTis that (1) may be 
invalid [12]. 

This problem was studied a long time ago in connection with the theory of normal 
metals. In this case r B K T  occurs for T 3  OD (0, = Debye temperature) due to 
electron-phonon interactions. It was shown that (1) remains valid as long as r < E ~ ,  

being the Fermi energy [13]. Introducing the electron mean free path 1 = uFr, uF = 
fikF/m being the Fermi velocity and kF being the Fermi wavevector, this condition may 
be written as r - h/r = huF/[ < uF - fiuFkF, or 13 kF’. This result was first obtained by 
Ioffe [14] and by Ioffe and Regel [15]. They pointed out that semiclassical transport 
theory must break down when the characteristic linear dimension of the wavepacket 
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associated with the quasiparticle -A (A = typical quasiparticle wavelength) exceeds 1. 
Thus (1) remains valid as long as 1 > A .  In ordinary metals A - k f ’  - a, a being the 
interatomic distance, and I > A reads 1 > a. 

The same condition, I > A, must also dictate the region of applicability of (1) to Bose 
conductors. In the normal state, A is the thermal De Bro lie wavelength 
AT = d w a n d  the particle~characteristic velocity is uT = &. Thus (1) is 
valid if 1 = uTr > AT or h/r  < KT,  a condition very different from that for ordinary 
conductors! If the Cu oxide superconductors are Bose conductors this restriction leads 
to a contradiction. As mentioned above, comparing p measured experimentally with 
(1) one finds h / r  3 KT which in tum violates I > A rendering (1) invalid. This also 
suggests that scattering processes that give rise to h/r  cc KTdo not explain p T, since, 
because 1 > h isviolated, p is no longer proportional to h/r .  

The expression for p valid when I < A is not known. What is generally accepted 
is the Ioffe-Regel criterion [16]. It states that 1 < A is impossible. This means that 
as 1 decreases below A,  p no longer increases with 1 but assumes the value psn - 
mu/n$A, obtained from (1) by setting 1 = ur - A  (0 = quasiparticle characteristic 
velocity). Experimental evidence for this type of behaviour is found in several metals 
[17, 181. What is observed is that p for these systems stops increasing with rising tem- 
perature. This phenomenon, called ‘resistivity saturation’ [18], is interpreted asevidence 
that 1 < A  in the temperature range where p no longer increases with T[17,18]. 

This simple physical reasoning suggests that p can be written as 

p = ( m / n e 2 r ) f ( A / / )  (2) 

wheref(x)isawellbehavedfunctionofx.ForJb/lG 1, f - t  l,so(Z)reducesto(l). For 
A/[ B 1 the loffe-Regel criterion givesf- yl/A, y being a constant -1, so 

p+ psac = y(mu/nezA) .  (3) 
For Fermi systems U = uF, A - k f L  - a so psat - ymu,/n$a. In  metals where resistivity 
saturation is observed equation (3) correctly predicts the order of magnitude of the 
maximum p 1191. 

Application of these ideas to Bose conductors gives A/ / -  AT/uTr - h/rKT. Thus, 
according to (Z), 

pB = (m/ne2r)f(h/rKT).  (44 

pya, = ymuT/ne2AT = y(mKT/ne2h). (5) 

ForA/rKT< l,p”reducesto(l). Forh/rKT> 1, pB-+pFat, where 

Thus, for Bose conductors in the regime 1 < A ,  ‘resistivity saturation’ occurs not at a 
constant p but at p:t, equation (9, which increases linearly with T. 

If the Cu oxide superconductors are two-dimensional Bose conductors, then. due to 
boson-phonon scattering [ll], h/r  = h T ( A  is aconstant that dependson the strength 
of the boson-phonon interaction). Thus, for A > 1, p is given by (5). Substituting in 
this equation the values appropriate for the oxide superconductors, n = 3 x l@’ cm-’, 
m - 5m,, and assuming y - 1 one finds p z t  = cuTwith CY - 1 pQ cm K-’. This p fa, is of 
the same order of magnitude as p in these materials and has the same temperature 
dependence. 

In the RVB theory [ZO] h/r has an additional contribution from holon-spinon scat- 
tering that varies as T3I2 [ X I .  Whether or not this is the most important contribution 
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depends on the relative strengths of the holon-phonon and holon-spinon contributions. 
In any case, as long as h/z > 1, the above conclusion holds true. 

In conclusion then, the simple physical arguments given above suggest that if the 
normal state of Cu oxide superconductors is a two-dimensional Bose conductor, the 
linear temperature dependence of p arises from resistivity saturation, rather than from 
an intrinsic scattering mechanism. 

I thank Professor P B Allen for his interest in this work and for encouragement. This 
work was supported in part by the Brazilian Government Agencies Finep, CNPq and 
CAPES. I am a CNPq Research Fellow. 
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